BWI Hilton Hotel

Thomas Sabol

The Pennsylvania State University
Architectural Engineering
Structural Emphasis

Advisor: Dr. Ali M. Memari

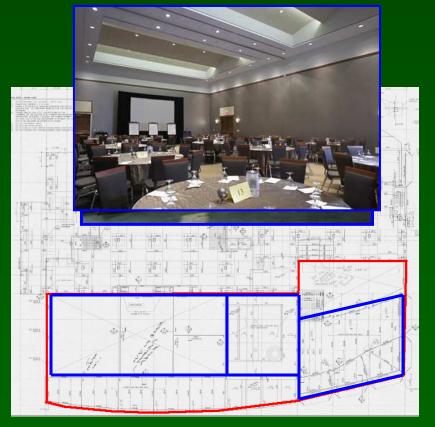
- Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign:
 - Girder-Slab for Typical Floors
 - Composite Beam for Ground 3rd Floor
 - Braced Frames
 - Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions

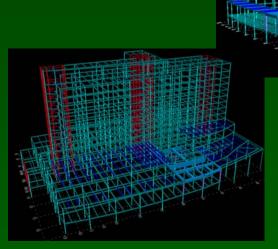
Introduction

131' Hotel -11-Stories & Penthouse

- -203,300 s.f.
- -280 Guest Rooms
- -80-Car Parking Below Ground
- -Aqua Restaurant

Hotel


Located: Linthicum Heights, Maryland 0.5 miles from BWI Airport


Height Restriction: \approx 290' from datum

Airport

Introduction

- "Adjacent Structure"
- -Framed in Structural Steel

Includes:

- -Main Entrance
- -8,300 s.f. Double Heighted-Ballroom
- Pool Area (Epoxy Reinf.) Concrete

Project Team

Owner: Buccini-Pollin

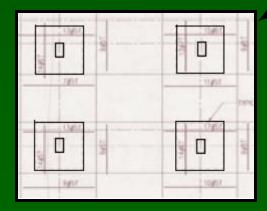
Architect: Brennan Beer Gorman Monk

Structural Engineer: Holbert Apple Associates

MEP Engineer: R G Vander Weil Engineers

Geotech Engineer: ECS, Ltd

General Contractor: HITT Contracting Inc.

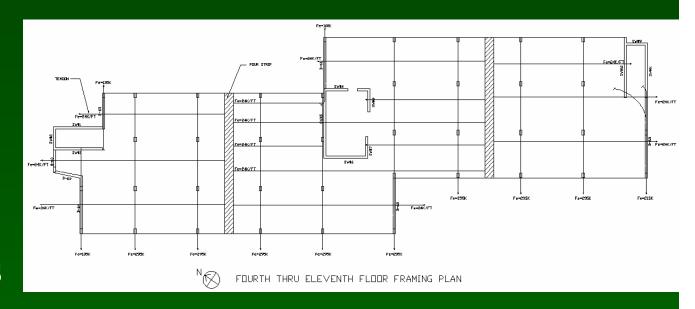


- ✓ Introduction
- Existing Structure
- Problem Statement/Proposal
- Structural Redesign:
 - Girder-Slab for Typical Floors
 - Composite Beam for Ground 3rd Floor
 - Braced Frames
 - Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions

Existing Structure – Gravity System

- 9" Flat Slab
- 9'x9'x4" Drop Panel
- -Mild Reinforced
- f'c = 4000 psi
- Bay size typical 27'x20'

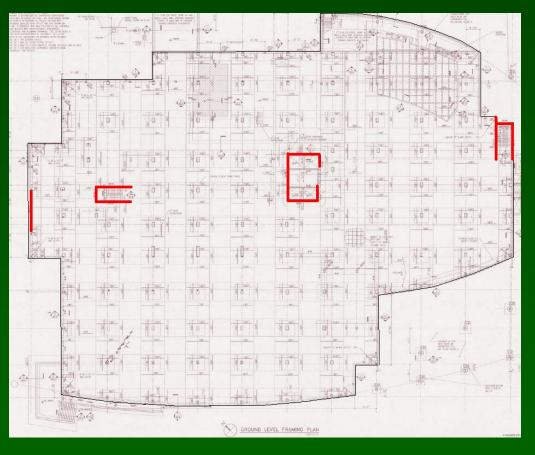
GROUND LEVEL FRAMING PLAN


Ground Floor Framing

Columns f'c = 5600 psi

Existing Structure – Gravity System

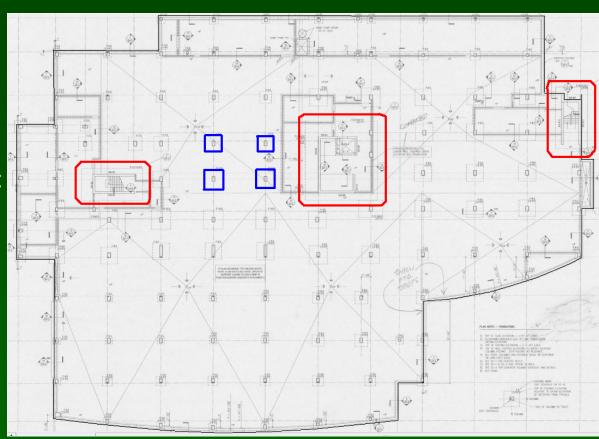
- -7-1/2" Flat Plate
- Post Tension
- f'c = 4000 psi
- Fe = 295 Kips in E-W
- Fe = 24 Kips/ft in N-S


Typical Framing Plan 4-11

Columns f'c = 4000 psi

Existing Structure – Lateral System

- 12 Shear Walls
 - 3 around each stair Tower
 - 5 around elevator core
 - -1 extends to 2nd Floor
- 12" Thick
- f'c = 4000 psi



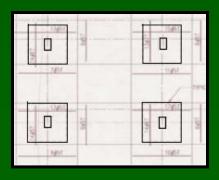
Shear Wall Locations

Existing Structure – Foundation

- Spread Footingsunder Gravity Columns
- -Mat Slabs under Elevator Core 36" thick and Stair Towers 32" thick
- Footings f'c 3000psi
- 5" SOG f'c 3500 psi

- ✓ Introduction
- ✓ Existing Structure
- Problem Statement/Proposal
- Structural Redesign:
 - Girder-Slab for Typical Floors
 - Composite Beam for Ground 3rd Floor
 - Braced Frames
 - Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions

Problem Statement

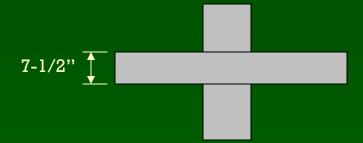

Height Restriction: \approx 290' from datum (Federal Aviation Administration)

Air Traffic

Disruption of Architecture

Same Bay Layout

Bottom of Flat Plate



Proposal Goals

Preserve Architecture

Comparable Steel Structure

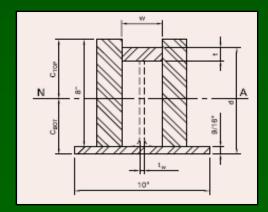
Post Tension Flat-Plate

Hotel Benefit

- -Redesigned Structure
- Faster Erection

\$\$\$

- ✓ Introduction
- ✓ Existing Structure
- ✓ Problem Statement/Proposal
- Structural Redesign:
 - Girder-Slab for Typical Floors
 - Composite Beam for Ground 3rd Floor
 - Braced Frames
 - Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions

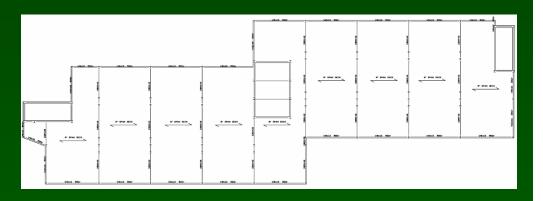

Girder-Slab System

Composite Action through Grouting

Transformed Section

Girder-Slab System for Typical Floors 4-11

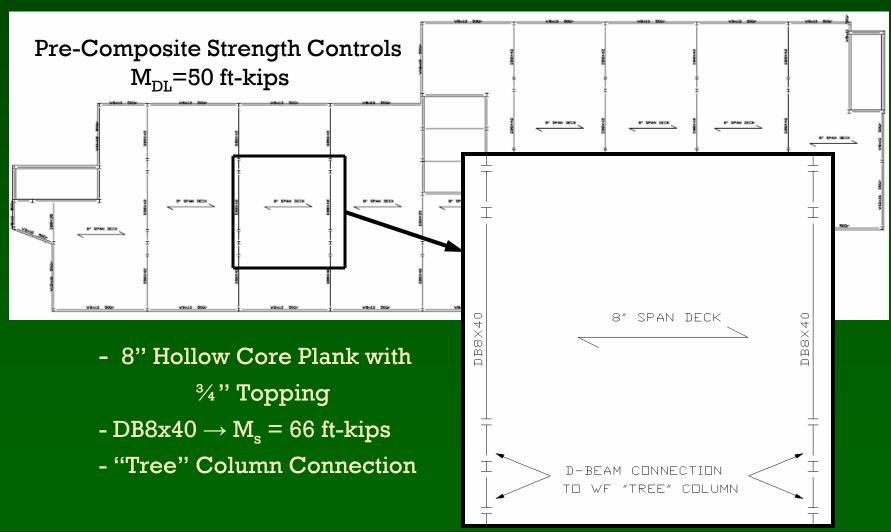
Designs Goals


- Comparable Thickness of PT (7-1/2")

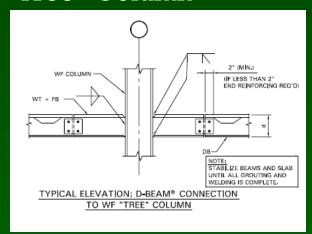
Design Parameters

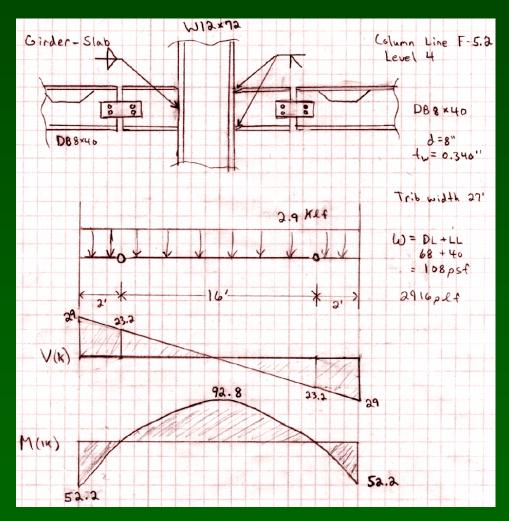
- Strength \rightarrow Live Load: 40 psf
- Deflection

Design Method


- ASD, Girder-Slab Design Guide
- Manual Calculations

Floors 4-11


Girder-Slab System for Typical Floors 4-11

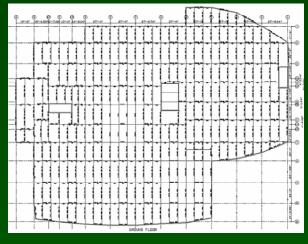


Girder-Slab System for Typical Floors 4-11

DB Connection to WF "Tree" Column

- 23.2 Kips Shear at Hinge
- -3/8" Plate w/ 2 -7/8" ø A325N bolts
- "Tree" WT8x22.5
- Fillet both sides & Bevel Weld
- 52.2 ft-Kips at Column face

- ✓ Introduction
- ✓ Existing Structure
- ✓ Problem Statement/Proposal
- Structural Redesign:
 - √ Girder-Slab for Typical Floors
 - · Composite Beam for Ground 3rd Floor
 - Braced Frames
 - Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions

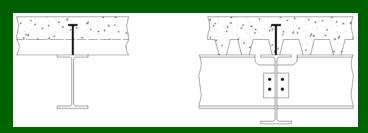

Composite Beam and Slab for Floors G-3

Designs Goals

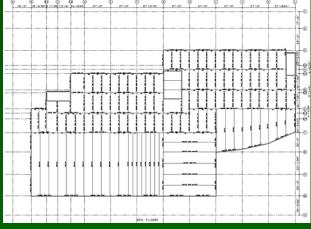
- Comparable Structure

Design Parameters

- -Strength →LL: 100 psf
- -Deflection
- -Vibration



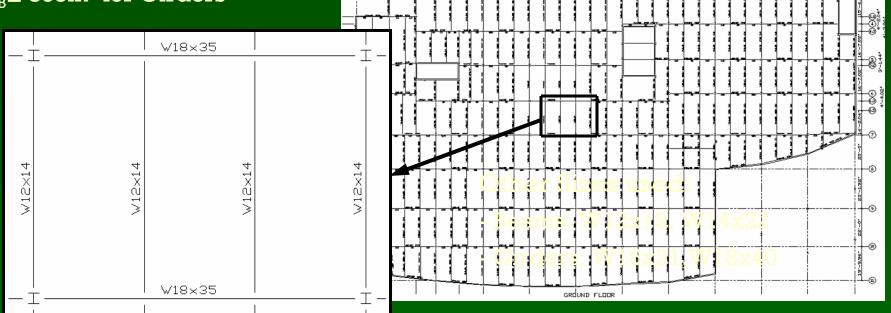
Ground Floor


2nd Floor

Design Method

- ASD
- RAM Structural System

2" LOK-Floor Deck 3" Concrete


3rd Floor

Composite Beam and Slab for Floors G-3

Deflection Controlled Design

- L/240 for Total Loading
- $I_{LB} \ge 171$ in⁴ for Beams
- $I_{LB} \ge 853 in^4$ for Girders

Walking Vibrations Checked for Office Area

Full height Partitions $\beta = 0.05$

Natural Frequencies

- Beam Mode 10.2 Hz
- Girder Mode 7.28 Hz
- Combined Mode <u>5.93 Hz</u>

$$\frac{a_{p}}{g} = \frac{P_{0} \exp(-0.35 f_{n})}{\beta W}$$

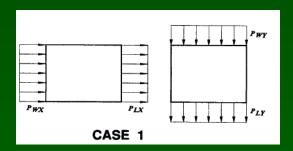
$$a_p/g = 0.31\%g$$

Recommended Limit for Offices: $0.5\%g \rightarrow OK$

Thomas Sabol

Senior Thesis Presentations: Spring 2007

- ✓ Introduction
- ✓ Existing Structure
- ✓ Problem Statement/Proposal
- Structural Redesign:
 - √ Girder-Slab for Typical Floors
 - ✓ Composite Beam for Ground 3rd Floor
 - · Braced Frames
 - Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions



Lateral Loads Obtained from ASCE7-05

Wind Loads

Basic Wind Speed 90 mph

Case 1 Loading Controlled

Base Shears

N-S 191 Kips

E-W 543 Kips

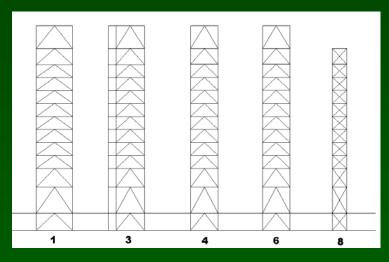
Equivalent Lateral Force Method

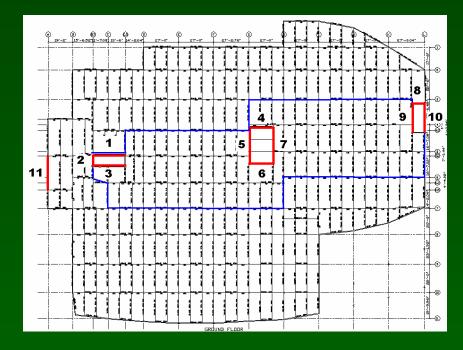
Seismic Design Category: B

$$S_{DS} = 0.160$$

$$S_{D1} = 0.085$$

R= 3.25 (Ord. Steel Conc. Braced Frames)


Base Shear 469 Kips


 \longleftarrow N

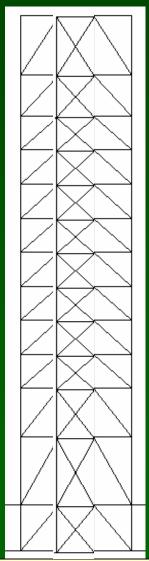
Braced Frames Resist Lateral Loads

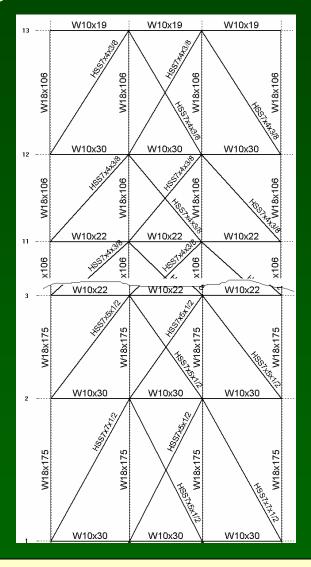
×

Chevrons & Cross Braces
HSS & Double Angles

Iterative Process to Design Braced Frames

Braced Frame #5

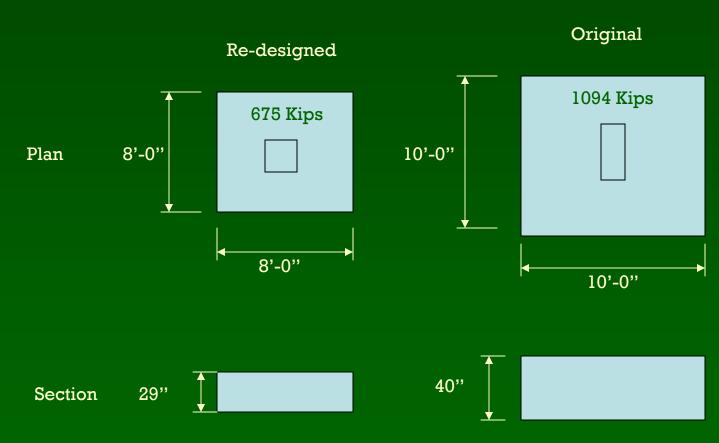

Design Controlled by Displacement of H/400


Cross Braces Increased Stiffness by a Factor ≈ 3

Column sizes were Increased

Brace sizes were Increased

Members Checked for ASD Load Combinations



- ✓ Introduction
- ✓ Existing Structure
- ✓ Problem Statement/Proposal
- Structural Redesign:
 - ✓ Girder-Slab for Typical Floors
 - ✓ Composite Beam for Ground 3rd Floor
 - √ Braced Frames
 - · Footings
- Cost & Schedule
- LEED Hotel Research
- Conclusions

Footing Sizes Decrease for Steel Structure

Footing at Column Line F-5.2

Decrease in Volume by 53%

Footing Sizes Decrease for Steel Structure

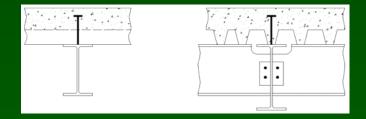
Two other footings were resized:

Concrete Volumes Decreased by 50% and 63%

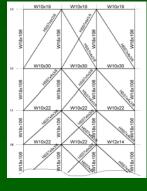
Existing Footing Volume: 390 yd³

50% of Existing: 195 yd3

R.S. Means Cost per Footing: \$370/yd³


Savings of \$72,150.00

Structural Depth Recap


Girder-Slab system for Typical floors 4-11

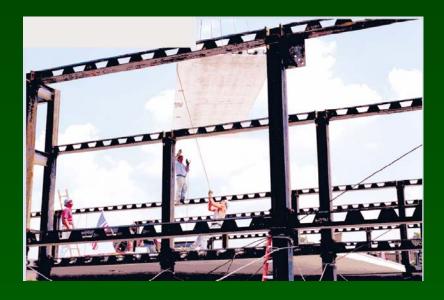
Composite Beam for floors ground-3rd

Braced Frames resist lateral loads

50% Reduction in Footings.

- ✓ Introduction
- ✓ Existing Structure
- √ Problem Statement/Proposal
- ✓ Structural Redesign:
 - ✓ Girder-Slab for Typical Floors
 - ✓ Composite Beam for Ground 3rd Floor
 - √ Braced Frames
 - √ Footings
- · Cost & Schedule
- LEED Hotel Research
- Conclusions

Cost Comparison of Systems


System	Component	S.F. Cost	Total Cost Including O&P
Steel	Composite Beam	\$22.55	
	Girder Slab	\$17.11	\$5,192,391.73
	Braced Frames	\$3.89	
CIP Concrete	Slab w/ Drop Panels	\$21.23	
	Post tension	\$21.52	\$5,126,712.35
	Shear Walls	\$1.80	

Schedule Reduced from Girder-Slab System

Erection of Concrete Structure
189 Calendar days

Erection of Steel Structure
144 Calendar days

Schedule Reduced by 45 Days!

Schedule Impacts on Hotel

Average Occupancy: 180 rooms per Night

Average Hotel Cost: \$211.50 per Room

Hotel Opens 45 days Earlier

Hotel would Generate a Revenue of:

\$1,713,150.00

Summary of Cost Analysis

	Cost	Savings	
CIP Concrete	5,126,712.35		
Steel	5,192,391.73		
Difference	-\$65,679.38		
Reduced Footings		\$72,150.00	
Generated Revenue from		\$1,713,150.00	
earlier opening date		\$1,713,130.00	
Savings from Steel System		\$1,719,620.62	

Hotel would Save/Generate:

\$1,719,620.00!!

- ✓ Introduction
- ✓ Existing Structure
- √ Problem Statement/Proposal
- ✓ Structural Redesign:
 - ✓ Girder-Slab for Typical Floors
 - ✓ Composite Beam for Ground 3rd Floor
 - √ Braced Frames
 - √ Footings
- ✓ Cost & Schedule
- LEED Hotel Research
- Conclusions

LEED Certified Hotel Research

lst LEED Certified Hilton Hotel LEED strategies:

- Buying locally
- Dimmable Fluorescents
- CO₂ monitoring
- Recycle Construction Waste

Hilton Vancouver Washington

30 People Surveyed
Consumers' Preference

LEED Certified Hotel Research

What does the Consumer want?

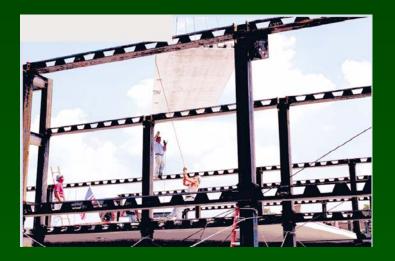
- Willing to Pay Slightly more
- Desirable Location
- Information

"Doing Our Part to be Environmentally Conscious"

This hotel received a LEED certification for sustainable practices. To learn more about these accomplishments inquire at the front desk.

- ✓ Introduction
- ✓ Existing Structure
- ✓ Problem Statement/Proposal
- ✓ Structural Redesign:
 - ✓ Girder-Slab for Typical Floors
 - ✓ Composite Beam for Ground 3rd Floor
 - √ Braced Frames
 - √ Footings
- ✓ Cost & Schedule
- ✓ LEED Hotel Research
- · Conclusions

Conclusions & Recommendation


Use Redesigned Steel System Why?

Girder-Slab System:

- Cuts down Schedule
- Comparable to PT floor thickness (1-1/4" thicker)

Steel System:

- Reduces Footing Sizes
- Overall Savings/Earnings of \$1,719,620.00

Acknowledgments

David Holbert, Holbert Apple & Associates: Providing my
Building & Drawings

AE Faculty: Guidance & Patience

THANK YOU!!

Industry Professionals: Providing Help & Information

5th AE students: Endless Entertainment & Help

Family & Friends: Love and Support throughout the years

Questions?